图文信息技术

基于 IWT-SVD 和 BRISK 的鲁棒图像水印算法

陈青,高贺

(上海理工大学 光电信息与计算机工程学院,上海 200093)

摘要:目的 针对数字图像水印中传统奇异值分解算法存在的提取水印对角线失真和目前的特征点匹配 算法速度慢引起抗组合几何攻击性能弱问题,提出基于 IWT-SVD 和 BRISK 的鲁棒图像水印算法。方法 该方案是将 Logistics 混沌映射置乱的水印嵌入宿主图像 IWT 变换后进行 SVD 分解的矩阵中,然后运用 BRISK 算法完成失真图像的几何校正,最后根据提取的水印图像特性,用邻域平均法进行对角线元素修 正。结果 嵌入水印后 PSNR 高于 42 dB,在各种常规信号处理和组合几何攻击下,NC 平均值在 0.95 以 上,提取出的水印对角线失真问题得到明显改善。结论 实验结果表明,该方案能提高图像特征点的匹 配速度,性能得到增强,水印不可见性较好,进一步提升了图像的鲁棒性。

关键词:IWT; SVD; BRISK; Logistics 混沌映射; 邻域平均法

中图分类号:TP391.41 文献标识码:A 文章编号:1001-3563(2020)17-0213-08

DOI: 10.19554/j.cnki.1001-3563.2020.17.030

Robust Image Watermarking Algorithm Based on IWT-SVD and BRISK

CHEN Qing, GAO He

(School of Optical-electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

ABSTRACT: The work aims to propose a robust image watermarking algorithm based on IWT-SVD and BRISK to solve the problems of the traditional singular value decomposition algorithm in digital image watermarking, such as diagonal distortion of extracted watermark and the weak performance against combined geometric attacks caused by slow speed of the current feature point matching algorithm. In this scheme, the watermark scrambled by the chaotic map was embedded into the singular value matrix of the SVD decomposition after IWT transformation of the host image, and then the BRISK (Binary Robust Invariant Scalable Keypoints) algorithm was used to complete the geometric correction of the distorted image. Finally, according to the extracted watermark image characteristics, the diagonal element correction was performed by the neighborhood averaging method. After the watermark was embedded, the PSNR was higher than 42 dB. Under various conventional signal processing and combined geometric attacks, the normalized correlation values of the extracted watermark and the original watermark were above 0.95, and the diagonal distortion of extracted watermark was significantly improved. Experimental results show that the scheme can increase the matching speed of image feature points, enhance the performance, provide better invisible watermark, and further improve the robustness of image.

KEY WORDS: IWT; SVD; BRISK; Logistics chaotic map; neighborhood average method

收稿日期: 2019-12-22

基金项目:上海理工大学国家级项目培育基金(16HJPY-MS06)

作者简介:陈青(1962—),女,博士,上海理工大学副教授、硕导,主要研究方向为信号处理。

奇异值分解(Singular Value Decomposition, SVD)是一种正交变换。由文献[1]可知,图像的奇异 值分解对各种信号处理及一般的几何失真具有稳定 性、线性、旋转不变性。SVD 算法在数字水印中得 到广泛的应用,目前出现了基于奇异值分解的鲁棒混 合数字图像水印方案^[2-4]。这些方案通过将水印图像 嵌入到载体图像的奇异值中,具有很好的稳定性和鲁 棒性,但在水印图像重建时存在着对角线失真问题。 MAKBOLNM 等^[5]将水印直接嵌入一级 IWT 分解子 带的奇异值中,并且引入了数字签名,该方案在消除 虚警率上是有效的,但提出的水印存在对角线失真的 问题。薛青晨等^[6]将水印信息嵌入载体 OR 码图像低 频分量中,较好地平衡了鲁棒性和不可感知性,但没 有解决误报问题。邱龙甲等[7]采取错位补偿的方法改 进了奇异值分解算法的对角失真,但对某些特定攻击 鲁棒性较差。肖振久等^[8]通过利用参数对奇异值矩 阵进行调整, 解决了对角线失真问题, 增强了鲁棒 性,但算法在运行时间和抗复合型几何攻击方面表 现不足。

基于图像特征点的第 2 代数字数字水印技术在 抗组合几何攻击方面表现出优越性。陈青、孙彦飞 等^[9]提出将 Harris 算子提取的特征区域与载体图像嵌 标志区相结合的新算法,虽然能抵抗几何攻击,但由 于 Harris 不具有尺度不变性,且检测的角点数目较 多,不抗缩放攻击。齐向明等^[10]将 Harris 特征点检测 算子与尺度空间相结合,提出在尺度空间选择图像特 征区域嵌入水印,结果表明该算法增强了抗各种攻击 的鲁棒性,由于检测的特征点存在冗余,使得嵌入水 印时间提高。陈宁等^[11]根据 SIFT 特征点的尺度特征 和坐标关系实现带水印图像的几何校正,保证了水印 信息的同步,但是 SIFT 算法时间复杂度高,效率低。 朱怡馨等^[12]提出基于 RDWT 和 SVD 的水印方法,通 过 SURF 算法提取特征点并筛选特征点匹配对用于 校正受攻击的图像,实现水印的嵌入和提取,提高了 抗几何攻击的鲁棒性,但该算法计算量大且实时性不 高。针对上述问题,文中提出了基于 IWT-SVD 和 BRISK 的鲁棒图像水印算法。

1 基本原理

1.1 整数小波变换(IWT)

LWT 是一种使小波适应常规设置的构造工 具^[13-14],在图像压缩和处理中,输入数据包含整数 样本。所有经典的转换都假设输入数据是浮点值,在 将这些浮点值转换为整数值时会失去完美的重建特 性。提升方案的一个重要特征可以实现将整数映射到 整数上的转换,而不存在舍入误差^[15],这个过程叫做 IWT。主要步骤包括拆分、预测和更新,提升操作见 图 1。

预测的奇数样本(Co)被视为高频分量,生成的 偶数样本(Ce)被视为低频系数,用同样的方法可以 进一步变换低频分量。反向提升操作可以通过如图 2 所示的合并操作更改分割块来实现。

图 2 反向提升操作 Fig.2 Inverse lifting operation

1.2 BRISK 算法

BRISK 算法一种特征提取算法,也是一种二进制的特征描述算子,具有较好的旋转不变性、尺度不变性和对噪声的鲁棒性,能实现图像的快速匹配^[16],具体表现形式如下所述。

1)构造 n 个 octave 层 c_i 和 n-1 个 intra-octave 层 d_i 的尺度空间金字塔结构, n取 4。octave 和 intra-octave 层的产生除第 1 层不同外,其余层都相 同。即 octave 第 1 层(c_0 层)是原图像,而 intra-octave 第 1 层(d_0 层)是原图像的 1.5 倍下采样图像。第 n层是第 n-1层的 2 倍下采样(n>2)图像,以此类推。 d_i 层是插在 c_i 和 c_{i+1} 之间, octave 层和 intra-octave 层 与原图像的关系,见表 1。

表 1	octave 层和 intra-octave 层与原图像的关系					
Tab.1 Relationship between the octave layer and the intra						
	octave layer and the original image					

图像	高度	宽度
c_0	Н	W
d_0	$\frac{2}{3}h$	$\frac{2}{3}w$
c_1	$\frac{1}{2}h$	$\frac{1}{2}w$
d_1	$\frac{1}{3}h$	$\frac{1}{3}w$
<i>c</i> ₂	$\frac{1}{4}h$	$\frac{1}{4}w$
d_2	$\frac{1}{6}h$	$\frac{1}{6}w$
<i>c</i> ₃	$\frac{1}{8}h$	$\frac{1}{8}w$
d_3	$\frac{1}{12}h$	$\frac{1}{12}w$

2)通过 FAST9-16(即在某像素点周围取 16 个 像素点,若超过连续 9 个点与中心点差值大于设定阈 值,则该点视为角点)进行特征点检测,得到具有角 点信息的 8 张图,然后将 FAST5-8 检测到的角点图 当作虚拟层即 *d*₋₁层。

3) 对上面得到的 9 幅图做空间上的非极大值抑制,选出位置和尺度空间共 26 个邻域点的 FAST 分值最大的特征点。

4)上述过程获得特征点的位置比较粗略,通过 亚像素插值进一步精确化,见图 3。

5)确定特征点后,以特征点为圆心采样 n 个点, 见图 4。

共有 C_n^2 个采样点对,用集合表示为式(1)。

图 3 尺度空间特征点插值 Fig.3 Feature point interpolation of scale space

图 4 采样模式 Fig.4 Sampling mode

$$U = \left\{ \left(P_i, P_j \right) \in \mathbb{R}^2 \times \mathbb{R}^2 \mid i \le n \land j \le i \land i, j \in n \right\}$$
(1)

式中: *I*(*P_i*,*σ_i*), *I*(*P_j*,*σ_j*)为像素强度, 按式(2)计 算采样点对的局部梯度值。

$$g(P_{i}, P_{j}) = (P_{j} - P_{i}) \cdot \frac{I(P_{j}, \sigma_{j}) - I(P_{i}, \sigma_{i})}{\left\|P_{j} - P_{i}\right\|^{2}}$$
(2)

定义长短距离点对子集L和S,见式(3)。

$$S = \left\{ \left(P_i, P_j \right) \in A \mid \left\| P_j - P_i \right\| < \delta_{\max} \right\},$$

$$L = \left\{ \left(P_i, P_j \right) \in A \mid \left\| P_j - P_i \right\| > \delta_{\min} \right\}$$
(3)

式中: δ 为尺度, 且 δ_{max} =9.75r, δ_{min} =13.67r; r 为特征点所在的尺度。利用长距离点对集的梯度信息 计算特征点的主方向和预旋转角,见式(4—5)。

$$g = \begin{pmatrix} g_x \\ g_y \end{pmatrix} = \frac{1}{L} \cdot \sum_{(P_i, P_j) \in L} g(P_i, P_j)$$
(4)

$$e = \arctan 2(g_y, g_x) \tag{5}$$

为了使特征点的方向始终保持水平,需要对特征 点周围的采样区域旋转到主方向,然后根据短距离点

a

对的像素大小关系按式(6)进行二进制编码。

$$b = \begin{cases} 1 & I(P_j^{\alpha}, \sigma_j) > I(P_i^{\alpha}, \sigma_i) \forall (P_i^{\alpha}, P_j^{\alpha}) \in S \\ 0 & \text{ and } \end{cases}$$
(6)

式中: $I(P_j^{\alpha}, \sigma_j)$ 旋转 α 角度后新采样点的像素强 度值。对最终生成的 512 bit 二值特征描述子采用 Hamming 距离进行特征匹配。

1.3 奇异值分解(SVD)

若矩阵 $A \in R^{m \times n}$,则必定存在正交矩阵 $U=[u_1,u_2...u_m] \in R^{n \times m}$, $V=[v_1,v_2...v_m] \in R^{n \times m}$,使得:

$$\boldsymbol{U}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{V} = diag(\sigma_{1},\sigma_{2}\cdots\sigma_{p}) = \boldsymbol{S}$$
(7)

由于 U 和 V 都是正交矩阵,所以 $A=USV^{T}$,其 中 $p=\min\{m,n\}$, σ_i 称为 A 的奇异值,且 σ_1 σ_2 ... σ_n 0_{\circ}

1.4 混沌映射算法

混沌是描述任意随时间变化过程的非线性动力 系统,该系统具有非周期性、随机性、确定性、收敛 性,并且对初始值的依赖极具敏感性,这些特性为序 列密码的产生提供了契机^[17]。文中使用简单的一维 Logistic 映射进行置乱,其数学表达式见式(8)。

 $x_{k+1} = \mu * x_k * (1-x_k)$ (8) 式中: $\mu \in [0,4]$ 为控制参数, 当 $X \in [0,1]$ 时, 映 射达到混沌状态。

2 水印方案

2.1 水印的嵌入

文中提出的水印嵌入算法见图 5。

假设宿主图像 C、水印图像 W 大小分别为 H×W 和 h×w。具体步骤如下所述。

1)通过 Logistics 映射算法生成 h×w 长度的混沌 序列并与二值水印图像 W 进行异或运算得到置乱后 的水印图像 w₀,将初始值、迭代次数作为密钥保存。

2)对宿主图像 C 进行三级 IWT 变换,取 LL3
 子带进行 SVD 分解 USV^T=L₃

3)将水印 w_0 嵌入奇异值矩阵 S 中,记为 $S_W=S+a \times w_0$ (*a* 为嵌入强度),并对其进行 SVD 分解 $U_1S_1V_1^{T}=S_W$,保存 U_1 , V_1^{T} ,然后进行 $US_WV^{T}=L'_{30}$.

4)对 L'₃进行三级逆小波变换构建图像,得到含 有水印信息的宿主图像。

文中提出的水印提取算法见图 6。

水印提取是水印嵌入的逆过程,具体步骤如下所述。

1)分别对嵌入水印后的图像和遭到几何攻击的 图像用 BRISK 算法检测并提取特征点及对应的特征 向量,通过特征向量获得匹配的特征点对。

Fig.5 Watermark embedding process

图 6 水印提取流程 Fig.6 Watermark extraction process

2)利用 RANSAC(随机抽样一致性)算法对特征点匹配对进行精确的筛选,对筛选后的特征点匹配对计算仿射变换参数,实现对攻击后的图像校正。

3)对校正后的图像进行三级 IWT 分解,对第3 层分解的低频子带 LL3*进行 SVD 变换:

$$L_3^* = \boldsymbol{U}^* \boldsymbol{S}^* \boldsymbol{V}^{*\mathrm{T}}$$
⁽⁹⁾

$$w' = \left(\boldsymbol{U}_{1}\boldsymbol{S}^{*}\boldsymbol{V}_{1}^{\mathrm{T}} - \boldsymbol{S}\right) / \alpha \tag{10}$$

根据嵌入算法中保存的密钥,对 w'进行解密,得 到解密后的水印图像。 5) 对解密后的水印图像运用邻域平均的方法消除对角线的失真,构建出提取到的水印图像。

3 实验结果及分析

实验以 Matlab R2016a 为验证平台,选取了 5 幅 512×512 的标准灰度图像(Lena, Barbara, Mandrill, Peppers, Cameraman)作为载体图像,采用大小为 64×64 的二值水印图像, α为 0.6,见图 7。文中用峰 值信噪比(PSNR)评价嵌入水印后的图像质量,归 一化相似度(NC)衡量水印相关性。

图 7 原始载体图像和水印图像 Fig.7 Original carrier image and watermark image

3.1 水印不可见性分析

从表 2 可以看出, PSNR 值都在 42 dB 以上, 说明 嵌入水印后的图像和原始图像非常接近, NC 值都为 1.00,说明提取的水印和嵌入的水印完全相同。文中算 法将水印嵌入在原始图像的奇异值矩阵中,由于 SVD 具 有很好的稳定性和鲁棒性,故表现出良好的不可感知性。

3.2 攻击实验

3.2.1 常规信号处理和简单几何攻击

从表3可知,经过各种常规信号处理和简单几何 攻击后,由于文中对提取的水印运用对角线上元素周 围的4个元素平均值来代替对角线上元素的值,在缩 小与原始水印差值的同时也平滑了像素,使对角线失 真问题得到明显改善,且NC值大于文献[5]。说明文 中算法具有一定的抗常规信号处理的能力。

为了说明该方案具备抗几何攻击的能力,以Lena 图像为载体图,通过实验比较了提出的算法与已存在 算法^[18]对几何攻击的鲁棒性,见表4。

表 2 无攻击图像质量和水印相关性实验结果 Tab.2 Experimental results of non-attack image quality and watermark correlation

嵌入水印后的图像	提取的水印	PSNR/dB	NC 值
	(42.8492	1.00
	(42.8454	1.00
Č.	$(\$	42.8801	1.00
	$(\$	42.8624	1.00
	(42.9163	1.00

表 3 提取的水印实验结果 Tab.3 Experimental results of extracted watermark

处理和		处理和攻	击后的图像及对	寸应的 NC 值		提取的	1水印
攻击方式	Lena	Barbara	Mandrill	Peppers	Cameraman	文中算法	文献[5]
JPEG 压缩	0.9805/0.9680	0.9797/0.9704	0.9846/0.9655	0.9854/0.9742	0.9821/0.9688	(S
直方图均衡化	0.9739/0.9671	0.9821/0.9719	0.9772/0.9688	0.0813/0.9727	0.9802/0.9711	(s)	S
降低对比度	0.9759/0.9071		0.09772/0.9088	0.9813/0.9727		S	S
椒盐噪声	0.9789/0.9687	0.9764/0.9653	0.9748/0.9639	0.9813/0.9631	0.9837/0.9728	S	S
高斯噪声	0.9748/0.9679	0.9757/0.9711	0.9780/0.9647	0.9773/0.9662	0.9789/0.9649	S	S
剪切	0.9667/0.9575	0.9732/0.9569	0.9739/0.9600	0.9740/0.9593	0.9772/0.9616	\$	S
旋转(30°)	0.9713/0.9664	0.9789/0.9702	0.9707/0.9663	0.9689/0.9632	0.9886/0.9705	(s)	S

注:/前表示文中算法的 NC 值,/后表示文献[5]算法的 NC 值

watermarking algorithms				
		NC 值		
攻击万式 -	文中算法	文献[18]算法	文献[8]算法	
旋转-105°	0.987	0.974	0.968	
旋转45°	0.9862	0.9732	0.9641	
旋转 60°	0.9837	0.9781	0.9696	
旋转 90°	1	0.9878	0.9703	
旋转 150°	0.9854	0.9725	0.9662	
缩放 0.5×0.5	0.9813	—		
缩放 2×2	0.9878	—		
缩放 0.8×1.2	0.8208	_		
平移[50,50]	0.965	0.9134	0.9001	
平移[50,-50]	0.9748	0.9406	0.9294	
平移[-50,50]	0.9708	0.9321	0.9204	
平移[-50, -50]	0.9813	0.9362	0.9237	

表 4 不同水印算法的鲁棒性对比 Tab.4 Comparison of robustness of different watermarking algorithms

从表 4 可以看出, 在相同的攻击下, 文中 NC 值 优于文献[8]和文献[18], 且后两者算法中缩放攻击的 NC 值几乎不存在。由于文中采用了 IWT 算法, 直接 将整数映射成整数, 无精度损失, 且是可逆的能够保 持一个完美的重建性能, 在增强鲁棒性和保持不可感 知性上比文献[8]中的 DWT 算法更高效, 故 NC 值高 于文献[8]。当水印图像受到外界干扰时, 文献[18]中 水印的同步会遭到破坏, 而文中是通过特征点匹配实 现图像校正的, 在一定程度上能够保持水印的同步, 故提取出的水印优于前者。实验结果表明文中提出的 算法对简单的几何攻击具有较好的鲁棒性。

3.2.2 组合几何攻击

为了验证该方案的抗组合几何性能和实时性效 果,设计了如图 8 所示的实验。

从图 8 中可以看出, 文中提取出的水印 NC 值略 低于文献[12], 但总体时间优于文献[12]。由于 BRISK 算法应用了一种新的尺度空间, 采用加速分割实验特 征 FAST 提取局部极值点, 使用汉明距离进行二值特 征匹配, 相比于文献[12]中通过欧式距离匹配的 SURF 算法其计算速度更快, 从而缩短时间, 但 SURF 算法通过构建 Hessian 矩阵获得 256 bit 的特征描述 子, 而 BRISK 算法只得到了 64 bit, 导致匹配的特征 点较少, 故在精度上低于文献[12]。实验结果说明文 中算法在抗组合几何攻击的基础上, 能够提高水印提 取的实时性。

4 结语

针对文中提出的基于 IWT-SVD和 BRISK 的图像 水印算法,使用 Logistics 映射对水印图像进行加密 置乱,增强了图像水印算法的安全性。水印嵌入过程 在小波域中进行,保证水印具有一定鲁棒性。采用 BRISK 和 RANSAC 算法相结合的方式在提高特征点 匹配精度的同时,也缩短了校正时间,满足实时性的 要求。采取错位补偿的方法,改进了奇异值分解算法 的对角失真。实验结果表明所设计算法不仅保证了嵌 入水印后图像的高质量,而且对常规的信号处理和各 种复杂的几何攻击均具有较好的鲁棒性。

参考文献:

- 周波,陈健. 基于奇异值分解的、抗几何失真的数字 水印算法[J]. 中国图形图像学报,2004,9(4): 506—510.
 ZHOU Bo, CHEN Jian. Geometric Distortion Resistant Digital Watermarking Algorithm Based on SVD[J]. Chinese Journal of Graphics and Image, 2004,9(4): 506—510.
- [2] AMIRMAZLAGHANI M. Additive Watermark Detection in The Wavelet Domain Using 2D-GARCH Model[J]. Information Sciences, 2016, 370(371): 1–17.
- [3] 蔡永梅. 基于 RDWT-DCT-SVD 的鲁棒性音频盲水 印算法 [J]. 计算机工程与设计, 2014, 35(2): 458—472.

CAI Yong-mei. Blind and Robust Audio Watermarking Scheme Based on RDWT-DCT-SVD[J]. Computer Engineering and Design, 2014, 35(2): 458-472.

- [4] POONAM, ARORA, SHAIFALI M. A DWT-SVD Based Robust Digital Watermarking for Digital Images[J]. Procedia Computer Science, 2018, 132: 1441-1448.
- [5] MAKBOL N M, KHOO B E. A New Robust and Secure Digital Image Watermarking Scheme Based on The Integer Wavelet Transform and Singular Value Decomposition[J]. Digital Signal Process, 2014, 33: 134—147
- [6] 薛青晨, 吴丹, 陈大庆, 等. 基于 DWT-SVD 和 QR 码的抗几何攻击数字水印技术[J]. 包装工程, 2016, 37(11): 158—163.
 XUE Qing-chen, WU Dan, CHEN Da-qing, et al. Geometrical Attack Resistant Digital Watermarking Technology Based on DWT-SVD and QR Code[J]. Packaging Engineering, 2016, 37(11): 158—163.
- [7] 邱龙甲, 李会方, 马建仓. 基于改进型奇异值分解的数字水印算法[J]. 火力与指挥控制, 2010, 35(6): 31—34.
 QIU Long-jia, BO Hui-fang, MA Jian-cang. Digital Watermarking Algorithm Based on Improved SVD[J].

Fire and Command Control, 2010, 35(6): 31—34.

[8] 肖振久,张晗,陈虹,等.增强奇异值分解和细胞神经网络的零水印[J].中国图象图形学报,2017,22(3):288—296.

XIAO Zhen-jiu, ZHAN Han, CHEN Hong, et al. Zero-watermarking Based on Boost Normed Singular Value Decomposition and Cellular Neural Network[J]. Journal of Image and Graphics, 2017, 22(3): 288–296.

 [9] 陈青,孙彦飞,郭功勋. 基于 Harris 角点的抗几何攻 击数字水印算法研究[J]. 包装工程, 2018, 39(13): 188—193.

CHEN Qing, SUN Yan-fei, GUO Gong-xun. Digital Watermarking Algorithm Resistant to Geometric Attacks Based on Harris Corner[J]. Packaging Engineering, 2018, 39(13): 188—193.

 [10] 齐向明, 徐嫚, 李玥, 等. 一种尺度空间特征区域的强鲁棒性水印算法[J]. 计算机应用研究, 2019, 36(6): 1793—1796.

QI Xiang-ming, XU Man, LI Yue, et al. Strong Robust Watermarking Algorithm in Scale Space Signature Area[J]. Application Research of Computers, 2019, 36(6): 1793–1796.

- [11] 陈宁,黄璐,马会杰,等.基于 SIFT 特征点匹配校正的抗几何攻击水印算法[J]. 电路与系统学报,2013,1(2):58—165.
 CHEN Ning, HUANG Lu, MA Hui-jie, et al. A Geometric Attack Resistant Watermarking Algorithm Based on SIFT Feature Point Matching Correction[J]. Journal of Circuits and Systems, 2013, 1(2): 158—165.
- [12] 朱怡馨, 唐正宁. 基于 SURF 和 RDWT 的抗几何攻 击水印算法[J]. 电子设计工程, 2019(27): 157—161.
 ZHU Yi-xin, TANG Zheng-ning. The Watermarking Algorithm Robust to Geometry Attacks Based on SURF and RDWT[J]. Electronic Design Engineering, 2019(27): 157—161.
- [13] SWELDENS W. The Lifting Scheme: A Construction of Second Generation Wavelets[J]. Siam Journal on Mathematical Analysis, 1998, 29(2): 511-546.
- [14] JIA Zhu-zhi, ZHU Hong-yu, CHENG Wan-sheng. A Blind Watermarking Algorithm Based on Lifting Wavelet Transform and Scrambling Technology[C]// Proceedings of International Conference on Electrical and Control Engineering, 2010: 4576—4579.
- [15] SU Qing-tang, NIU Yu-gang, LIU Xian-xi, et al. A Blind Dual Colour Images Watermarking Based on IWT and State Coding[J]. Optics Communications, 2012, 285(7): 1717–1724.
- [16] LEUTENEGGER S, CHLI M, SIEGWART RY. BRISK: Binary Robust Invariant Scalable Keypoints[C]// Computer Vision (ICCV), 2011 IEEE International Conference, 2011: 2548—2555.
- [17] 丁煜明. 基于混沌的数字图像加密算法研究与实现
 [D]. 广州: 广东工业大学, 2016: 1—55.
 DING Yu-ming. Research and Implementation of Digital Image Encryption Algorithm Based on Chaos[D].
 Guangzhou: Guangdong University of Technology, 2016: 1—55.
- [18] MAKBOL N M, KHOO B E, RASSEM T H, et al. A New Reliable Optimized Image Watermarking Scheme Based on The Integer Wavelet Transform and Singular Value Decomposition for Copyright Protection[J]. Information Science, 2017, 417: 381—400.