疏水型纸浆纤维基隔热泡沫材料的制备及性能研究

张自聪,郝发义^{*},刘伟丽,余文龙

(上海理工大学 出版学院,上海 200093)

摘要:目的 开发具有疏水性、可回弹的生物降解型纸浆纤维基隔热泡沫。方法 以纸浆纤维为主要原料, 十二烷基硫酸钠为发泡剂,聚乙烯醇为交联剂,阳离子型聚丙烯酰胺为黏结剂,经过打浆、搅拌发泡、 滤水和干燥,制备纸浆纤维基泡沫材料。在此基础上,通过涂布聚乳酸/二氧化硅进行疏水改性,降低 纸浆纤维基泡沫的吸湿性。 结果 性能测试表明,所得纸浆泡沫具有超低密度(0.044 3~0.069 8 g/cm³)、 高孔隙率(95.22%~97.04%)、低热导率(0.071 1~0.081 1 W/(m·K))、优异的回弹性(1次压缩回弹率 可达 91.65%,10次压缩回弹率为 87.77%)。聚乳酸/二氧化硅涂层显著提高了纸浆纤维基泡沫的隔热性 能、疏水性(接触角为 132.3°)。结论 疏水型纸浆纤维基泡沫可代替传统泡沫用于冷链包装,支持包装 行业的可持续发展。

关键词:纸浆纤维;泡沫材料;疏水;隔热
 中图分类号:TB34
 文献标志码:A
 DOI: 10.19554/j.cnki.1001-3563.2024.21.018

文章编号: 1001-3563(2024)21-0125-08

Preparation and Properties of Hydrophobic Pulp Fiber-Based Insulating Foam Materials

ZHANG Zicong, HAO Fayi^{*}, LIU Weili, YU Wenlong

(College of Publishing, University of Shanghai for Science and Technology, Shanghai 200093, China)

ABSTRACT: The work aims to develop a hydrophobic, resilient, and biodegradable pulp fiber-based insulating foam. With pulp fibers as the main raw material, sodium dodecyl sulfate as the foaming agent, polyvinyl alcohol as the cross-linking agent, and cationic polyacrylamide as the binder, the pulp fiber-based foam materials were prepared through a process involving pulping, mixing and foaming, drainage, and drying. To reduce the hygroscopicity of the pulp fiber-based foam, a hydrophobic modification was performed by coating with a polylactic acid/silica layer. The performance tests showed that the pulp fiber-based foam had ultra-low density (0.044 3-0.069 8 g/cm³), high porosity (95.22%-97.04%), low thermal conductivity (0.071 1-0.081 1 W/(m·K)), excellent resilience (resilience up to 91.65% after once compression, 87.77% after ten times of compression). The polylactic acid/silica coating significantly improved the thermal insulation, and hydrophobicity (contact angle 132.3°) of the pulp fiber-based foam. Hydrophobic pulp fiber-based foams can be used in cold chain packaging instead of traditional foams, supporting the sustainable development of the packaging industry.

KEY WORDS: pulp fiber; foam materials; hydrophobicity; thermal insulation

塑料泡沫由于其轻质、隔热和缓冲性能^[1],在包装、建筑等多个领域得到广泛应用^[2-3]。然而,塑料泡沫的不可降解性带来日益严重的环境污染问题^[4]。

因此,开发可生物降解的替代材料,对于推动包装行 业可持续发展具有重要意义^[5-6]。

目前开发的可降解泡沫材料包括淀粉基、聚乳酸

基和纤维素基等^[7-8]。尽管现有的可降解泡沫材料在 一定程度上满足了环保要求,但在实际应用中仍存在 一些局限性。例如,淀粉基材料在潮湿环境中容易降 解,影响其缓冲性能^[9];聚乳酸基材料虽然具有良好 的生物相容性,但其成本较高,难以大规模应用^[10-11]。

作为地球上最丰富的生物聚合物,纤维素因其生 物降解性和环境友好性、高强度、高柔韧性和大纵横 比而被认为是制造轻质泡沫的理想候选者[12-14]。目 前,纤维素泡沫主要通过冷冻干燥或超临界二氧化碳 干燥制备,该过程高能耗、长时间,因而不易于工业 上的规模应用[15]。而纸浆纤维基泡沫以造纸纤维为原 料,通过表面活性剂在高速搅拌下发泡,过滤掉多余 的水分,再通过常压干燥制成多孔材料,这是一种低 成本、环保、简单的制备方法[16]。然而, 纯纸浆泡沫 较弱的机械强度和高吸湿性限制了其在包装领域的 应用,因泡沫材料主要用于运输包装和冷链包装[17], 这些领域对泡沫材料的力学性能,比如回弹性有较高 的要求。Nechita 等^[18]研究表明,在缓冲包装中,纤 维素基泡沫材料与其他纸基(瓦楞纸板、模塑纸浆) 包装材料相比具有其特定的优点,但是回弹性和传统 泡沫相比还存在明显不足。而在冷链物流中,要求作 为保温材料的泡沫具有较好的隔热性能和疏水性能。 Niu 等^[19]研究表明纤维素基泡沫对湿度敏感,当用作 绝缘材料时,会有不同程度的受潮或降解,导致霉菌 生长、力学性能和绝缘性能下降。鉴于上述事实,纤 维素基泡沫疏水性能还有待进一步提升。

针对现有材料的不足,本文研究以纸浆纤维为基本原料,开发一种新型的可降解泡沫材料。该材料不 仅具有良好的回弹性和较低的热导率,而且通过表面 改性,实现了纸浆纤维基泡沫的疏水,使其能满足缓 冲包装和冷链包装的需求。本研究采用十二烷基硫酸 钠作为发泡剂,聚乙烯醇作为交联剂,阳离子聚丙烯 酰胺作为黏结剂,通过简单、高效的制备工艺,实现 了材料性能的优化。

1 试验方法

1.1 试验材料和仪器

主要材料:漂白亚硫酸盐针叶木浆,大连扬润贸 易有限公司;十二烷基硫酸钠(Sodium Dodecyl Sulfate, SDS),分析纯,上海泰坦科技有限公司;聚 乙烯醇(Polyvinyl Alcohol, PVA),分析纯,上海易 恩化学技术有限公司;阳离子聚丙烯酰胺(Cationic Polyacrylamide, CPAM),分析纯,天津市致远化学 试剂有限公司;聚乳酸(Polylactic Acid, PLA),辅 程塑化科技(上海)有限公司;亲油二氧化硅(SiO₂, 粒径为 20 nm,纯度为 99.99%,密度为 2.2~2.6 g/cm³) 上海中冶新材料有限公司;二氯甲烷,分析纯,上海 阿拉丁生化科技有限公司。 主要仪器: 85-2 磁力搅拌器,东莞市三量量具有 限公司;FS-400D 分散机,杭州齐威仪器有限公司; DHG-9040AS 电热恒温鼓风干燥箱,嘉兴市中新医疗 仪器有限公司;JSM-IT500HR 扫描电子显微镜,日 本电子株式会社;MLD-225B 恒温恒湿试验箱,密朗 德仪器科技(江苏)有限公司;DRE-III 多功能快速 导热系数测试仪,湘潭湘仪仪器有限公司;3366 万 能测试仪,美国英斯特朗(Instron)公司; HM-TPH10-3AUF 恒温热像仪,杭州微影软件有限公 司;JC2000D3E 接触角测量仪,上海中晨数字技术设 备有限公司;IS5 傅里叶变换红外光谱仪,美国尼高 力(Nicolet)仪器公司。

1.2 纸浆纤维基泡沫的制备

本研究采用如图 1 所示的流程制备纸浆纤维基 泡沫。首先,将绝干木浆置于磨粉机中精细研磨 20 min。 根据预试验的结果,分别配制质量分数为 3%、4%和 5%的纸浆,使用分散机在 2 500 r/min 对纸浆进行 30 min 的均匀分散,并将其静置过夜以促进纤维的均匀分 布。在制备湿泡沫阶段,首先将 PVA 溶于 90 ℃水中, 磁力搅拌 30 min,制成质量分数为 10%的 PVA 溶液。 将纤维悬浮液与适量的发泡剂 SDS、PVA 溶液及 CPAM 混合搅拌 25 min 制备湿泡沫。将制备好的湿 泡沫倒入尺寸为 10 cm×10 cm×5 cm 的模具中,模具 底部设有 200 目的筛网以利于游离水的排出。随后, 将湿泡沫连同模具一同放入 80 ℃烘箱中干燥 8 h。干 燥完成,即可获得轻质、多孔的纸浆纤维基泡沫。本 研究采用田口 L9 正交试验设计,具体变量和水平设 置详见表 1。

1.3 纸浆纤维基泡沫的疏水改性

将 PLA 溶解在二氯甲烷中,在磁力搅拌下制成 质量分数为 20%的溶液。使用涂布法将一定量的 PLA 溶液涂覆到预先处理好的纸浆纤维基泡沫表面,在基 底表面形成固定厚度的 PLA 涂层,初步构建疏水涂 层。利用 200 目网筛将 0.3 g 疏水型二氧化硅颗粒均 匀覆盖在 10 cm ×10 cm 的 PLA 层上。最后将样品放 入 80 ℃鼓风干燥箱中烘干 6 min 促进 PLA/SiO₂的交 联及二氯甲烷的挥发,即可得到具有 PLA/SiO₂的交 联及二氯甲烷的挥发,即可得到具有 PLA/SiO₂复合 涂层的疏水型纸浆纤维基泡沫。将涂布 PLA、 PLA/SiO₂的纸浆纤维基泡沫样品分别命名为 F-PLA、 F-PLA/SiO₂。在测试之前,所有样品在 23 ℃和相对 湿度(*H*_R)为 50%的恒温恒湿箱中调节 24 h。

1.4 纸浆泡沫的表征

1.4.1 发泡性能及湿泡沫稳定性测试

发泡性能是通过每隔 5 min 记录 1 次湿泡沫的发 泡体积来判断的。取 100 mL 湿泡沫倒入试管里,分 别观察 0、30、60 min 时湿泡沫的稳定性并拍下当时 湿泡沫的显微照片。

图 1 纸浆纤维基泡沫制备流程(a),交联示意图(b)和表面疏水改性过程示意图(c) Fig.1 Preparation process (a), crosslinking diagram (b) and hydrophobic modification process of pulp fiber-based foam (c)

sample formulation								
样本	纤维质量	SDS 质量	PVA 与	CPAM 与				
序号	分数/%	浓度/(g·L ⁻¹)	纤维质量比	纤维质量比				
E-1	3	1.0	0.50	0.50				
E-2	3	1.5	0.75	0.75				
E-3	3	2.0	1.00	1.00				
E-4	4	1.0	0.75	1.00				
E-5	4	1.5	1.00	0.50				
E-6	4	2.0	0.50	0.75				
E-7	5	1.0	1.00	0.75				
E-8	5	1.5	0.50	1.00				
E-9	5	2.0	0.75	0.50				

表 1 样品配方的田口 L9 正交试验设计

Tab.1 Taguchi-L9 orthogonal experimental design for

1.4.2 密度及孔隙率

根据式(1),利用体积和质量比计算泡沫的密度。 结合式(2),利用泡沫的密度和结晶纤维素密度,计 算纸浆纤维基泡沫的孔隙率^[20]。

$$\rho_{\rm f} = \frac{m}{V} \tag{1}$$

孔隙率 (%) =
$$(1-\frac{\rho_{\rm f}}{\rho_{\rm c}})\times 100\%$$
 (2)

式中: m 为干燥泡沫的质量, g; V 为干燥泡沫

的体积, cm³; ρ_f 为干燥泡沫的密度, g/cm³; ρ_c 为结 晶纤维素的密度(以 1.460 g/cm³ \exists)。

1.4.3 压缩回弹性能测试

根据 ISO 844—2007 标准^[21], 压缩试验在试验机 上进行, 压缩速率设定为 5 mm/min, 轴向连续压缩 泡沫至原始样品高度的 50%, 循环次数设定为 10 次。

1.4.4 接触角和吸湿率测试

使用接触角测量仪评估纸浆纤维基泡沫的疏水 性能。使用微量注射器将 10 μL 去离子水液滴在泡沫 表面上。对于每个样品,在5个不同的位置重复测量, 通过平均数值确定其接触角。

在 105 ℃预干燥 2 h 的纸浆纤维基泡沫, 然后在 25 ℃, 相对湿度为 75%的恒温恒湿箱中进行吸湿率 测量, 并每隔 1 h 使用分析天平测量增重, 直到达到 恒重。吸湿率的计算式为式(3):

$$w = \frac{m_1 - m_0}{m_0} \times 100\%$$
(3)

式中: m_0 为吸湿前泡沫的质量,g; m_1 为吸湿后 泡沫的质量,g;w为试样在规定温、湿度下吸收水 分的质量分数,以百分数(%)表示。

1.4.5 热绝缘性能测试

采用多功能快速导热测试仪测定泡沫的热导率,

每个样品重复测量 5 次, 计算热导率的平均值。采用 红外热像仪对泡沫导热效果进行红外成像, 将泡沫置 于 70 ℃恒温加热台上加热 30 min 后拍摄样品顶面和 侧面红外热成像图。

1.4.6 形貌分析

将纸浆泡沫样品切片,并将其粘贴在导电胶上,用 高真空离子溅射仪对样品表面进行喷金处理,随后使用 场发射扫描电镜(SEM)对泡沫表面微观形貌进行观测。

1.4.7 傅里叶变换红外(FTIR)测试

通过傅里叶变换红外光谱仪以衰减全反射(ATR) 模式在 600~4 000 cm⁻¹范围内以 4 cm⁻¹的光谱分辨率对 组分的化学结构进行了表征,总共进行 64 次扫描。

2 结果与讨论

2.1 发泡性能及湿泡沫稳定性测试

纸浆悬浮液在剧烈机械搅拌和表面活性剂的作用下形成大量泡沫,每隔 5 min 测量发泡体积,结果如图 2 所示。在实际发泡过程中,体系中的纸浆纤维、 CPAM 和 PVA 可能会影响 SDS 分子在空气-液体界面的扩散和吸附。比如,SDS 质量浓度为 2 g/L 时,对比不同纸浆含量配方的发泡性能,发现 E-6 的最终发泡体积最小,这是因为在 E-6 体系中 PVA 含量少而 CPAM含量多,纸浆含量的影响被忽略。一方面,PVA 有一定的发泡能力,可作发泡剂,这有助于减少工艺中其他化学品的用量。另一方面,CPAM 的加入导致了体系黏度的上升,发泡过程中表面活性剂分子受到抑制,导致空气-水界面的表面活性剂分子传质速度降低^[18]。

Fig.2 Foaming properties of pulp fiber-based foams with different conditions

用显微镜观察气泡大小随静置时间的变化,如图 3 所示,可见滤出水的液面高度和气泡尺寸随着静置 时间的增加逐渐增大。这是因为在泡沫形成过程中, 表面活性剂会在液膜表面有序排列并包裹气体,通过降 低界面张力实现泡沫的稳定^[22]。在整个试验中, E-8 滤 水体积最小,因为其 CPAM 含量最高,湿泡沫的稳定 性明显提高。CPAM 提高了空气-水界面的黏度和弹 性,从而减缓了湿泡沫中液体的排出和气泡粗化^[23]。

图 3 0, 30, 60 min 湿泡沫的稳定性(a)和 对应状态的湿泡沫(b) Fig.3 Wet foam stability at 0, 30 and 60 min (a) and pictures in corresponding states (b)

2.2 泡沫结构分析

利用扫描电镜对泡沫的表面微观形貌进行表征, 如图 4a 所示,纸浆纤维基泡沫是由随机取向的纤维 组装而成的三维多孔网络结构。从图 4b 可见,经过 多次研磨纤维表面变得粗糙,增强了纤维之间的连 接。涂覆 PLA 后,泡沫的纤维表面结构也发生了相 应的变化,对比图 4a 和图 4c,可以发现 F-PLA 泡沫 的表面被 1 层连续的 PLA 覆盖。PLA 溶液的较高黏 度使相邻的纤维被黏结,增强了泡沫纤维骨架的连接 强度。而经 PLA/SiO₂ 疏水改性的泡沫表面变得更加 粗糙(图 4e),这是由于在纤维表面覆盖了1 层疏水 SiO₂颗粒(图 4f),这证明经过 80 ℃、6 min 的固化, 疏水 SiO₂颗粒可以留住,这也是纸浆纤维基泡沫具 有良好疏水性的关键。

为了探索纸浆纤维基泡沫的官能团结构,分别对 未处理的纸浆纤维基泡沫 E-2 和疏水改性后的 F-PLA/SiO₂进行了FTIR光谱分析,结果如图5所示。 观察 E-2光谱发现,在3336.47 cm⁻¹附近有1个较宽 的振动带,这是由于纤维素和 PVA 中存在大量的羟 基。而且在2917 cm⁻¹(—CH₂伸缩)、1659 cm⁻¹(—OH 弯曲)、1316 cm⁻¹(—CH 弯曲)及1032 cm⁻¹(C—O 伸缩振动)都显示出典型纤维素带的特征峰。在纸浆 纤维基泡沫加入 PLA/SiO₂后,吸收峰发生变化。 F-PLA/SiO₂的光谱在1700~1750 cm⁻¹的波数范围内 出现了强烈的吸收峰,这是聚乳酸中的羧酸基团形成 的峰。Si—O 基团的对称伸缩振动的峰通常出现在1 000~1100 cm⁻¹的波数范围内,且Si—O—Si键的伸缩振 动模在1043 cm⁻¹和1180 cm⁻¹有2个吸收峰,这也侧 面表明SiO₂可以留存在纸浆纤维基泡沫材料上。

图 4 未涂布 (a, b)、涂布 PLA (c, d) 和涂布 PLA/SiO₂ (e, f) 纸浆纤维基泡沫的 SEM 图像 Fig.4 SEM images of pulp fiber-based foam uncoated (a, b), coated with PLA (c, d) and coated with PLA/SiO₂ (e, f)

2.3 压缩回弹性能

泡沫材料的力学性能主要通过压缩测试进行评估。不同配方的纸浆纤维基泡沫的密度、孔隙率和回 弹率见表 2,当样品 E-3 压缩应变为 50%时,第1次 压缩的回弹率为 91.65%,进行 10次压缩和释放循环 后,回弹率仍可达 87.77%。然而涂布 PLA/SiO₂ 对纸 浆纤维基泡沫材料的回弹性有所影响,F-PLA/SiO₂ 泡沫压缩 1次回弹率为 87.71%,10次压缩和释放循 环后的回弹率为 79.71%,相比而言有微小下降。纸 浆纤维泡沫材料回弹性能的改善,使它在替代聚合物 基泡沫材料方面具有很大的潜力。

pulp fiber-based foam							
Tab 2 Dansity narrosity and compression resiliance of							
表 2	纸浆纤维基泡沫的密度、	扎隙率和压缩回理性能					
+ ~							

出术它旦	密座/ (a. am ⁻³)	孔隙率/%-	回弹率/%	
件平厅与	雷度/(g·cm)		1次	10 次
E-1	0.043 2	97.04	91.09	85.15
E-2	0.044 3	96.91	91.49	85.54
E-3	0.048 9	96.64	91.65	87.77
E-4	0.061 5	95.81	91.16	85.73
E-5	0.066 1	95.52	90.27	85.68
E-6	0.066 0	95.61	89.55	83.33
E-7	0.067 9	95.37	89.10	84.18
E-8	0.067 7	95.37	87.85	83.13
E-9	0.069 8	95.22	88.97	81.74
F-PLA/SiO ₂	0.077 3	94.71	87.71	79.71

2.4 表面疏水性和泡沫吸湿性

分别对未涂布、涂布 PLA、涂布 PLA/SiO₂的纸浆 纤维基泡沫进行接触角、吸湿率测试。将 PLA 涂布在 泡沫表面,然后在其固化前覆盖 1 层疏水性纳米 SiO₂ 进行改性。图 6a 显示泡沫改性后的疏水性能,对于 F-PLA/SiO₂样品,蓝色水滴滴到其表面保持圆珠状,这 说明 F-PLA/SiO₂ 具有良好的疏水性能。而且通过对 F-PLA/SiO₂和 F-PLA 这 2 种泡沫的接触角进行测试, 结果如图 6b 所示, F-PLA 的初始接触角为 108.8°, 30 s 后接触角剧烈下降为 72.2°,说明 PLA 提高了表面的疏 水性,但是保持时间不长。而 F-PLA/SiO₂的初始接触 角为132.3°,保持 1 min后接触角为126°,说明PLA/SiO₂ 赋予纸浆泡沫良好的疏水性而且具有高稳定性。

图 6 F-PLA/SiO₂泡沫样品表面液滴形态(a), F-PLA/SiO₂和 F-PLA 泡沫的接触角(b) Fig.6 Droplet morphology on the surface of F-PLA/SiO₂ foam (a) and contact angle of F-PLA/SiO₂ and F-PLA (b)

在 25 ℃,相对湿度为 75%的条件下,未涂布、 涂布 PLA 和涂布 PLA/SiO₂的纸浆纤维基泡沫的吸湿 曲线如图 7 所示。在初始阶段,三者吸湿速率均较快, 未涂布的纸浆纤维基泡沫吸湿最快,涂布 PLA 的样 品吸湿最慢,约 12 h 后吸湿达到平衡。未改性纸浆 泡沫吸湿率较高,为 15.14%,PLA/SiO₂改性泡沫与 涂布 PLA 泡沫的吸湿率分别为 12.42%和 11.87%。这 表明,除了改进泡沫的疏水性之外,涂布 PLA 和涂 布 PLA/SiO₂的泡沫,尤其是 PLA 固化后形成阻隔层, 显著降低了纸浆纤维基泡沫的吸湿性。

图 7 未涂布泡沫、F-PLA/SiO₂和 F-PLA泡沫的吸湿率 Fig.7 Moisture absorption rate of uncoated foam and F-PLA/SiO₂, and F-PLA foams

2.5 热绝缘性能

纸浆纤维基泡沫通过纤维网络和 PVA 交联协同 增强,表现出轻质(密度为 0.044 3~ 0.069 8 g/cm³) 和高孔隙率(95.22%~97.04%)的结构特点,表明其 作为一种有效的隔热材料的潜在应用。室温下,纸浆 泡沫的热导率在 0.071 1~0.081 1 W/($m\cdot K$)(图 8)。而 用 PLA/SiO₂处理的泡沫的热导率为 0.078 6 W/($m\cdot K$), 与未经处理的泡沫没有太大差异。涂层减少了泡沫表 面的孔隙率,增加了通过固体传导的热传递,从而导致 整体泡沫的热导率有所上升。本研究的热导率数值与 Wu 等^[15]制备的密度更低(0.040 65~0.052 15 g/cm³)、 热导率为 0.057 02~0.078 68 W/($m\cdot K$)的硼酸盐交联 纸浆泡沫的相当,可用作冷链包装的保温材料。

将未涂布和涂有 PLA/SiO₂的纸浆泡沫放在初始温 度为 70 ℃的恒温台上,评价所得泡沫的隔热性能。如 图 9 红外成像情况所示,在 30 min 内泡沫顶面的温度 分别达到 32.3 ℃和 29.6 ℃。相较而言,涂有 PLA/SiO₂ 的纸浆纤维基泡沫的上表面始终保持在低温状态(图 9b),这是由于表面的 PLA/SiO₂ 涂层阻隔了热量的传 递。从侧面热成像图可以看出,相较于未涂布的泡沫, 涂有 PLA/SiO₂的泡沫在最初 30 min 内,热区(以橙红 色/紫色为界)的高度明显更小,而且在加热过程中纸 浆泡沫材料的上表面区域始终没有到达热区。

图 9 未涂布 (a, c)和涂有 PLA/SiO₂ (b, d) 纸浆纤维基泡沫 在 70 ℃加热台上的顶面和侧面的红外成像 Fig.9 Infrared photos of the top and side surfaces of uncoated (a, c) and PLA/SiO₂ coated (b, d) pulp fiber-based foam on a heating plate thermostatic at 70 ℃

3 结语

本文研究了以纸浆纤维为原料制备可回弹、疏水 型隔热泡沫材料的方法,并对制备过程中的发泡性 能、湿泡沫稳定和泡沫材料的结构、压缩回弹性能、 耐水性及热绝缘性进行了系统研究。PVA 和 CPAM 在纸浆纤维基泡沫内构建了牢固的网络,显著提高其 在低密度(0.044 3~0.069 8 g/cm³)下的回弹性能(回 弹率为 91.65%,10 次循环后回弹率为 87.77%)。 PLA/SiO₂涂布法制备的 F-PLA/SiO₂泡沫表面具有良 好的疏水性(接触角约为 132.3°)。疏水改性后纸浆泡 沫的热导率低至 0.078 6 W/(m·K),且隔热性能良好, 可用于冷链隔热包装。考虑到其低成本、易操作和可 规模化生产的潜力,这种制备可回弹、疏水的纸浆纤 维基泡沫的工艺在开发可持续生物基隔热泡沫方面 具有良好的应用前景。

参考文献:

- GLENN G, ORTS W, KLAMCZYNSKI A, et al. Compression Molded Cellulose Fiber Foams[J]. Cellulose, 2023, 30(6): 3489-3503.
- [2] CHEN L, WANG S H, WANG S S, et al. Scalable Production of Biodegradable, Recyclable, Sustainable Cellulose-Mineral Foams *via* Coordination Interaction Assisted Ambient Drying[J]. ACS Nano, 2022, 16(10): 16414-16425.
- [3] ZHU Y L, ZHU J Y, LI Y T, et al. Chemical Binder-Free and Oven-Dried Lignocellulose/Clay Composite Foams: Flame Resistance, Thermal Insulation, and Recyclability[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(46): 16499-16508.

- [4] HOU Y S, LIAO J M, HUANG L Y, et al. Plant Bio-Inspired Laminar Cellulose-Based Foam with Flame Retardant, Thermal Insulation and Excellent Mechanical Properties[J]. Journal of Materials Chemistry A, 2023, 11(3): 1138-1147.
- [5] HAFEZ I, TAJVIDI M. Comprehensive Insight into Foams Made of Thermomechanical Pulp Fibers and Cellulose Nanofibrils *via* Microwave Radiation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(30): 10113-10122.
- [6] 郝发义,胡丹,张自聪. 基于常温干燥法的纤维素基 泡沫制备及性能分析[J]. 包装学报, 2023, 15(6): 9-16.
 HAO F Y, HU D, ZHANG Z C. Preparation and Characterization of Cellulose-Based Foam *via* Ambient Drying[J]. Packaging Journal, 2023, 15(6): 9-16.
- [7] GU Y Q, SHEN Y C, WU T H, et al. Comprehensive Enhancement of Flame Retardant Starch/Cellulose/Diatomite Composite Foams *via* Metal-Organic Coordination[J]. International Journal of Biological Macromolecules, 2024, 266: 131313.
- [8] LIAO J M, LUAN P C, ZHANG Y X, et al. A Lightweight, Biodegradable, and Recyclable Cellulose-Based Bio-Foam with Good Mechanical Strength and Water Stability[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107788.
- [9] MUJTABA M, LIPPONEN J, OJANEN M, et al. Trends and Challenges in the Development of Bio-Based Barrier Coating Materials for Paper/Cardboard Food Packaging: A Review[J]. Science of the Total Environment, 2022, 851: 158328.
- [10] 张宇翔. 湿法制备纸浆/聚乳酸复合泡沫工艺及性能 调控[D]. 广州: 华南理工大学, 2022: 3-5.
 ZHANG Y X. Preparation of Pulp/Polylactic Acid Composite Foam by Wet Method and Its Performance Control[D].

Guangzhou: South China University of Technology, 2022: 3-5.

- [11] SHAO L Y, XI Y W, WENG Y X. Recent Advances in PLA-Based Antibacterial Food Packaging and Its Applications[J]. Molecules, 2022, 27(18): 5953.
- [12] HOU Y S, LIAO J M, LI L, et al. A Novel Eco-Friendly Lightweight Cellulose-Based Foam with Superior Resilience and Hydrophobicity for Selective Oil/Water Separation[J]. Cellulose, 2024, 31(7): 4409-4420.
- [13] LUJAN L, GOÑI M L, MARTINI R E. Cellulose–Chitosan Biodegradable Materials for Insulating Applications[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(36): 12000-12008.
- [14] SUN H, ZHU H, ZHU P H, et al. Lightweight, Mechanically Robust and Scalable Cellulose-Based Foam Enabled by Organic-Inorganic Network and Air Drying[J]. Chemical Engineering Journal, 2024, 491: 152014.
- [15] WU M Y, YU G, CHEN W, et al. A Pulp Foam with Highly Improved Physical Strength, Fire-Resistance and Antibiosis by Incorporation of Chitosan and CPAM[J]. Carbohydrate Polymers, 2022, 278: 118963.
- [16] HE S H, LIU C, CHI X W, et al. Bio-Inspired Lightweight Pulp Foams with Improved Mechanical Property and Flame Retardancy *via* Borate Cross-Linking[J]. Chemical Engineering Journal, 2019, 371: 34-42.
- [17] 郝发义,张自聪,胡丹. 纳米纤维素基泡沫材料在包 装领域的研究进展[J]. 包装学报, 2023, 15(5): 69-77.

HAO F Y, ZHANG Z C, HU D. Research Progress of Nanocellulose-Based Foams in Packaging Field[J]. Packaging Journal, 2023, 15(5): 69-77.

- [18] NECHITA P, NĂSTAC S M. Overview on Foam Forming Cellulose Materials for Cushioning Packaging Applications[J]. Polymers, 2022, 14(10): 1963.
- [19] NIU X, ZHU H, MHATRE S, et al. Betulin Enables Multifunctional Cellulose-Based Insulative Foams with Low Environmental Impacts[J]. ACS Nano, 2024: 4c04011.
- [20] 廖建明. 纸浆纤维多孔泡沫材料的性能调控及应用研究[D]. 广州: 华南理工大学, 2022: 39-40.
 LIAO J M. Study on Performance Regulation and Application of Pulp Fiber Porous Foam Material[D]. Guangzhou: South China University of Technology, 2022: 39-40.
- [21] 国际标准化组织.硬质泡沫塑料.压缩性能的测定: ISO 844—2007[S].日内瓦:国际标准化组织,2007. International Standard Organization. Rigid Cellular Plastics — Determination of Compression Properties: ISO 844—2007[S]. Geneva: International Standard Organization, 2007.
- [22] HJELT T, KETOJA J A, KIISKINEN H, et al. Foam Forming of Fiber Products: A Review[J]. Journal of Dispersion Science and Technology, 2022, 43(10): 1462-1497.
- [23] ZHOU Y X, YIN W B, GUO Y L, et al. Green Preparation of Lightweight, High-Strength Cellulose-Based Foam and Evaluation of Its Adsorption Properties[J]. Polymers, 2023, 15(8): 1879.