孙武亮,董俊慧,楠顶,李文博,高晓波,孙文秀.聚乙烯醇比色纤维膜结合神经网络学习技术用于细菌污染检测[J].包装工程,2024,45(19):144-152.
SUN Wuliang,DONG Junhui,NAN Ding,LI Wenbo,GAO Xiaobo,SUN Wenxiu.Polyvinyl Alcohol Colorimetric Fiber Membrane Combined with Neural Network Learning Technique for Bacterial Contamination Level Detection[J].Packaging Engineering,2024,45(19):144-152.
聚乙烯醇比色纤维膜结合神经网络学习技术用于细菌污染检测
Polyvinyl Alcohol Colorimetric Fiber Membrane Combined with Neural Network Learning Technique for Bacterial Contamination Level Detection
投稿时间:2024-07-31  
DOI:10.19554/j.cnki.1001-3563.2024.19.014
中文关键词:  比色指示  神经网络学习技术  细菌污染  静电纺丝
英文关键词:colorimetric indicator  artificial neural networks learning technique  bacterial contamination  electrostatic spinning
基金项目:内蒙古重大科技项目(2020ZD0024)
作者单位
孙武亮 内蒙古工业大学 材料科学与工程学院,呼和浩特 010051 
董俊慧 内蒙古工业大学 材料科学与工程学院,呼和浩特 010051 
楠顶 内蒙古大学 化学与化工学院,呼和浩特 010021 
李文博 内蒙古农业大学 食品科学与工程学院,呼和浩特 010018 
高晓波 内蒙古工业大学 材料科学与工程学院,呼和浩特 010051 
孙文秀 内蒙古农业大学 食品科学与工程学院,呼和浩特 010018 
AuthorInstitution
SUN Wuliang School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China 
DONG Junhui School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China 
NAN Ding College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China 
LI Wenbo College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China 
GAO Xiaobo School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China 
SUN Wenxiu College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 细菌污染是影响食品安全的主要因素,开发更准确、快速、无创的检测技术对保障饮食安全有重要意义。方法 本实验使用静电纺丝技术制备了聚乙烯醇(PVA)/花青素(cy)纳米纤维膜(C-PVA cy),结合人工神经网络学习技术(Artificial Neural Networks,ANN)建立了对细菌污染程度的预测模型,实现了通过颜色变化精确预测细菌浓度。使用扫描电子显微镜和傅里叶红外光谱仪测定C-PVA cy结构及成分;再测定其对pH和大肠杆菌的颜色响应性,研究其检测性能;再使用ANN技术对膜的颜色变化进行学习并建立预测模型。结果 C-PVA cy具有粗细均匀的纳米纤维丝(直径为747 nm),cy被成功引入其中。纤维膜在不同pH下有明显的颜色差异,其对不同浓度的大肠杆菌呈现了从深红色到棕红色的颜色变化,检测限为9.8×101 cfu/mL。使用ANN成功建立了C-PVA cy颜色值(L*,a*,b*值)与细菌浓度的预测模型,验证准确率可达96%。结论 C-PVA cy纳米纤维颜色指示膜结合ANN实现了细菌污染程度的精确预测,操作便捷,准确度较高,为食品安全性快速检测提供了新思路。
英文摘要:
      Bacterial contamination is a major factor affecting food safety, and the development of more accurate, rapid, and noninvasive detection techniques is important for ensuring dietary safety. In this experiment, polyvinyl alcohol (PVA)/anthocyanin (cy) nanofibrous membranes (C-PVA cy) were prepared by electrostatic spinning technology, and a prediction model for the degree of bacterial contamination was established by combining with Artificial Neural Networks (ANN) learning technique to realize the accurate prediction of bacterial concentration by color change. Scanning electron microscopy and Fourier infrared spectroscopy were used to determine the structure and composition of C-PVA cy. Then, its color responsiveness to pH and E. coli was determined to study its detection performance. Next, the ANN technique was used to learn the color change of the membrane and establish a prediction model. The C-PVA cy had uniformly thick and thin nanofiber filaments (747 nm in diameter) into which cy was successfully introduced. The fiber membrane had obvious color differences at different pH values, showing a color change from dark red to brownish red for different concentrations of E. coli, with a detection limit of 9.8 × 101 cfu/mL. A prediction model for the color values (L, a, b values) of C-PVA cy versus bacterial concentration was successfully established by ANN, with a validation accuracy of up to 96%. The C-PVA cy nanofiber color indicator film combined with ANN achieves the precise prediction of bacterial contamination level with convenient operation and high accuracy, which provides a new idea for the rapid detection of food safety.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第28624546位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

渝公网安备 50010702501716号